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Abstract: The metabolic sources of energy for myo-
cardial contractility include mainly free fatty acids
(FFA) for 95%, and in lesser amounts for 5% from
glucose and minimal contributions from other sub-
strates such lactate, ketones, and amino acids. How-
ever, myocardial efficiency is influenced by metabolic
condition, overload, and ischemia. During cardiac
stress, cardiomyocytes increase glucose oxidation and
reduce FFA oxidation. In patients with ischemic coro-
nary disease and heart failure, the low oxygen avail-
ability limits myocardial reliance on FFA and glucose
utilization must increase. Although glucose uptake is
fundamental to cardiomyocyte function, an excessive
intracellular glucose level is detrimental. Insulin plays
a fundamental role in maintaining myocardial effi-
ciency and in reducing glycemia and inflammation;
this is particularly evident in obese and type-2 diabetic
patients. An excess of F availability increase fat deposi-
tion within cardiomyocytes and reduces glucose oxida-
tion. In patients with high body mass index, a
restricted diet or starvation have positive effects on
cardiac metabolism and function while, in patients
with low body mass index, restrictive diets, or starva-
tion have a deleterious effect. Thus, weight loss in
obese patients has positive impacts on ventricular
mass and function, whereas, in underweight heart fail-
ure patients, such weight reduction adds to the risk of
heart damage, predisposing to cachexia. Nutrition
terest and no funding support to this work.
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plays an essential role in the evolution of cardiovascu-
lar disease and should be taken into account. An
energy-restricted diet improves myocardial efficiency
but can represent a potential risk of heart damage,
particularly in patients affected by cardiovascular dis-
ease. Micronutrient integration has a marginal effect
on cardiovascular efficiency. (Curr Probl Cardiol
2020;45:100391.)
Energy Metabolism and Heart Function

T
he cardiomyocyte is a unique muscle cell which possesses the

ability to maintain contractile function under varying metabolic

conditions. In a healthy heart, under normal physiological condi-

tions, the contractile function is sustained by the production of adenosine

triphosphate (ATP), predominantly derived from the fatty acid oxidation

(60%-90%), with the balance derived from glucose (30%-40%)1 and a

lesser contributions from lactate, ketones, amino acids, and pyruvate.

Pyruvate production derives mainly from glycolysis and lactate oxidation

of 10%.2-4 The primary energy source for cardiac metabolism is supplied

by free fatty acids (FFA) and by chylomicrons which cross the cell mem-

brane passively or transported actively by a specific protein.5 In the

healthy heart, although lipid oxidation represents the principal energy

source, the glucose metabolism is essential to maintain physiological car-

diac function.2

Glucose uptake from cardiomyocytes is regulated mainly by Glut-4,

in response to insulin stimulation and increases during ischemia or

work demand (overload).6 Glut-4 is dependent upon activation of

AMP-activated protein kinase (AMPK), nutria-sensors of the cells.7

Glycolysis causes the formation of pyruvate, and its oxidation is the

final step of carbohydrate (CHO) oxidation.8 Glucose and pyruvate oxi-

dation is inhibited by FFA levels, while increased by the reduction of

FFA level9 This interaction between fatty acids availability and glycol-

ysis inhibition was first described by Randle and is called “glucose-fatty

acid cycle”.10 In conditions of cardiac stress and overload, the cardio-

myocyte energy source shifts towards higher utilization of glucose.

In normal cardiomyocytes, the ATP production is maintained constant

by mitochondrial oxidative phosphorylation, even in the condition of

overload, eg, intensive exercise or hypertension.11 The increased contrac-

tile force is sustained by a concomitant increase in fatty acid and carbohy-

drate utilization12 and by the nutritional state13 as observed during
Curr Probl Cardiol, January 2020



overnutrition and restricted calorie balance that significantly changes car-

diomyocyte energy metabolism.

During maximal cardiac demand, the healthy heart progressively utilizes

lactate for energy.14 In the condition of cardiac stress, such as in prolonged

overload and the hypertrophied heart, cardiac metabolism changes—spar-

ing FFA oxidation, while increasing glucose oxidation.15 During ischemic

heart conditions, glucose becomes the prevalent source of energy for myo-

cardial tissue � both in chronically hypertrophied and normal hearts.16 In

severely ischemic hypertrophied hearts, glycogen degradation is further

accelerated, and the consequent reduced CHO availability accentuates the

risk of ischemia and reduced contractile performance.15

In patients with ischemic coronary artery disease (CAD), the low oxygen

availability of the myocardium is supplied by optimizing glucose utilization

with an improved insulin activity and cardiomyocytes glucose sensitivity. In

heart failure (HF) the global cardiac efficiency is impaired due to the reduced

mitochondrial energy production17 via oxidative phosphorylation18 and these

conditions favor an evolution from cardiac hypertrophy to HF.19 Glucose is

the most energetically efficient substrate which is preferentially utilized dur-

ing conditions of myocardial stress such as overload and HF. In these circum-

stances, the increased glucose oxidation protects against acute myocardial

ischemic injury.20 Furthermore, in HF the myocardium metabolizes ketone

bodies which become an essential fuel source for oxidative ATP production.21

Ketone body oxidation is metabolically more efficient than FFA oxidation22

and can acutely improve left ventricular function.23 In the failing heart,

ketones bodies represent a preferential source of energy for energy produc-

tion.21 Although ketone bodies oxidation is a more competitive energy

pathway compared with other substrates in HF, there is a great limitation

due to the ketogenic diet characterized by a high fat and high protein with

minimal (50 g/day) or absent intake of carbohydrates,24 not at all tolerated

by these patients. However, the effect of the ketogenic diet in patients with

cardiovascular disease (CVD) remains to be investigated. Thus, the meta-

bolic flexibility of cardiomyocyte is considerable and is responsive to

changes in substrate availability and nutritional status. (Fig 1).
Metabolism in the Heart
FFA
FFA metabolism is less efficient energetically than glucose metabo-

lism although it increases the oxygen consumption.25 However, an exces-

sive availability of myocardial FFA exceeds the oxidative capacity of the
Curr Probl Cardiol, January 2020 3
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FIG 1. Fatty acids are prevalently oxidized by adult heart, in diabetes, and fasting. Glucose oxi-
dation is prevalent in fetal heart, hypertrophy, cardiac overload, and ischemia. During fasting
are oxidized ketone bodies and amino acids.
myocardial tissue favoring the FFA accumulation as intramyocardial lip-

ids, thus causing a “lipotoxicity,” leading to insulin resistance and

impairment of the cardiac function.26-28 A high intracellular lipids accu-

mulation, as observed in type-2 diabetes, inhibits the glucose oxidation

via the phosphorylation of pyruvate dehydrogenase kinase.29
Glucose Metabolism
Glucose crosses the membrane of cardiomyocytes passively or by glu-

cose transporter GLUT4 which regulates the glucose level in the cells. In
4 Curr Probl Cardiol, January 2020



contrast to skeletal muscle, in cardiomyocytes, there is also a significant

expression of GLUT1, which contributes to cardiac glucose uptake under

certain circumstances.30 Various hormones and cytokines regulate glu-

cose metabolism in the myocardium contributing to the development of

insulin resistance.31

Glucose is an oxygen sparing substrate that generates more ATP per

mole of oxygen compared to fatty acids, and when the availability of

oxygen is decreased, it can produce energy through glycolysis. Imaging

studies using the fluorodeoxyglucose-positron emission tomography

FDG-PET have shown that the ischemic myocardium in the fasting state

changes the energy source switching from fatty acids to glucose.

Preserving myocardial viability,32 and the degree of elevation in

myocardial glucose uptake is predictive of cardiac function recovery

after revascularization.32

In patients with a nonischemic CAD, whole body substrate oxida-

tion rates did not differ from that observed in the no-CAD group.33

In ischemic CAD patients, their myocardium will adapt to the condi-

tion of limited oxygen availability, although oral glucose loading

does not acutely increase myocardial CHO oxidation, evidences lim-

ited metabolic flexibility. These data indicate that there is a remark-

able chronic requirement and utilization of glucose in patients with

ischemic CAD.34 The ability of ischemic myocardium to upregulate

glucose extraction by overexpressing glucose transporters is lim-

ited35,36 and some evidence indicates that physiological plasma glu-

cose levels and insulin activity are essential to increase glucose

delivery to tissues, thereby playing a protective role.37-39 In agree-

ment with this, hypoglycemia has been shown to extend the area of

necrosis in the ischemic heart,40 and recent trials addressing exces-

sive glucose reduction following the therapy in type-2 diabetes

patients found an increased rate of cardiovascular events and mortal-

ity, correlated with the frequency of hypoglycemic episodes.41 How-

ever, the switching from FFA to glucose substrate utilization is not

completely benign. In fact, the increased use of glucose changes the

glutation-related and mTOR pathways favoring hypertrophy and oxi-

dative stress.42 Activation of mTORC1, a major regulator of cell

growth, promotes protein synthesis and responds to stress, and

nutrients, particularly amino acids and glucose.43 AMPK is low and

activated by exercise overload and ischemia and regulates the glucose

uptake with an insulin-independent mechanism44 (Fig 2).
Curr Probl Cardiol, January 2020 5



FIG 2. Caloric restriction improves insulin sensitivity that inhibits directly the Akt/NF-kB and
increase the AMPK in the cell. NF-kB inhibits phosphorylation of mTOR and reverses left ventricu-
lar remodeling and cardiac function The activation of both signaling act directly on mitochondria
in the cardiomyocytes. AMPK and PGC1 increase mitochondrial biogenesis and autophagy.
The increased efficiency of mitochondria reduces the ROS production and improvement of cell
survival and apoptosis. Prolonged starvation reduces the muscle mass and strength favoring
cachexia.
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Protein and Amino Acids
In chronic heart failure (CHF) patients, a reduced circulating level of

amino acids was observed, that is correlated with HF severity.45 Amino

acids have a regulatory effect on myocardium protein turnover46,47 and

raise the oxygen consumption and glucose oxidation.48 Amino acids have

the physiological function to stimulate mitochondrial energy production

under anaerobic conditions48 and activate the protein synthesis in cardio-

myocytes47 in the presence of glucose and insulin that accelerates the for-

mation of peptides chains.49 A higher amino acid levels, more

specifically branched chain amino acids (BCAA), are oxidized by the

heart, and a 7% of O2 consumption is required proceeding through

the formation of CoA derivative49 suggesting a role as metabolic fuels

and a primary anabolic effect on the human heart.46 Amino acids avail-

ability is crucial for heart and depends solely on serum amino acids lev-

els.50 Myocardial tissue uses amino acids for protein synthesis which is

regulated by the availability of the circulating amino acids, by the avail-

ability of oxidative substrates, by the oxygen delivery, and the availability

of anabolic hormones.47

However, recent reports found that an abnormal amino acids metabo-

lism (included BCAA) were correlated with pathologic remodeling after

myocardial infarction51 and a higher concentration of serum level of

BCAAs was correlated with increased risk of CVD, especially stroke, in

a population with high cardiovascular risk.52 A high level of BCAAs was

correlated with cardiac diseases53 and that a defect in the catabolism of

BCAA is implicated in the pathogenesis of HF54 associated with elevated

oxidative stress, and profound metabolic changes in the heart. BCAA

catabolism in the myocardium is an underconsidered part of metabolic

dysfunction and could explain therapeutic target for the disease.

In patients with CHF, Aquilani et al45 found a reduced arterial amino

acids levels that were correlated with the severity of left ventricular dys-

function. In the study NYHA class II, III, and IV have been evaluated,

and all class-patients received an adequate nutritional intake. In patients

in NYHA class IV group which received the nutritional intake of

kcal 2132 § 482/day (29.2 kcal/kg/day), protein 1.3 g/kg/day and CHO

3.6 g/kg/day and lipids 1.2 g/kg/day, the level of essential and BCAAs

were found extremely reduced compared to healthy (Fig 3). Nutritional

intake was not responsible for the low amino acids level. However, these

data show that a diet with normal caloric and protein intake in HF patients

needs along much time to restore the normal circulating level of amino

acids probably due to malabsorption and that protein ingestion should be
Curr Probl Cardiol, January 2020 7
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FIG 3. Serum level of total amino acids (AA), essential amino acids (essential AA) and branched chain amino acids in healthy (orange) and FH patients (blue)
(from Aquilani et al45 modified, with permission). (Color version of figure is available online.)
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supplemented with essential amino acids. Unfortunately, in this study, the

plasma level of anabolic hormones such as insulin, testosterone, estradiol,

and IGF1 was not detected and this could have explained in part this

aspect.

The effect of protein intake on the progression of CVD and HF remains

to be fully elucidated. Epidemiologic studies have found that a high

intake of protein with the diet had no deleterious effect on CVD and

HF55,56 while the greater incidence of CVD was observed in middle age

women.57 In rats with HF induced by pressure overload, a high protein

intake with the diet did not affect cardiac mass, left ventricular volumes

or ejection fraction, or myocardial mitochondrial oxidative capacity, but

the survival was significantly reduced.58
Insulin Effects on the Ischemic Heart
Insulin activity, reducing plasma glucose level, plays an important

anti-inflammatory effect on the heart counteracting left ventricular and

mitochondrial dysfunction in ischemic myocardial tissue, although, the

complexity of insulin signaling within the myocardium is not fully eluci-

dated.59 Higher plasma glucose levels have a deleterious effect on cardiac

function,60 impairing cardiomyocytes function at the nuclear level61 and

reducing diastolic and systolic function.62 The acute overingestion of glu-

cose activates an inflammatory process and the reactive oxygen species

generation63 through the NF-kB (nuclear factor kB), the most sensitive

transcription factor to redox signaling.64 Glycemic control is beneficial to

reduce the risk of mortality in type-265 and type-1 diabetes.66 Hyperglyce-

mia in the acute care setting in HF patients was associated with increased

mortality. Improving glucose control and insulin sensitivity in type-1 dia-

betes patients significantly reduces the risk of microvascular complications

and CVD.67 The amount of carbohydrates ingestion is extremely important

in the development of the inflammatory process, which is regulated by

insulin activity.68 Insulin activity, reducing plasma glucose level, plays an

important anti-inflammatory effect on the heart counteracting left ventricu-

lar and mitochondrial dysfunction in ischemic myocardial tissue, although,

the complexity of insulin signaling within the myocardium is not fully elu-

cidated.59 Insulin has a vasodilator effect, by increasing arterial blood flow

at the microcirculatory level and stimulating nitric oxide formation,69

which has an anti-inflammatory, antithrombotic, and antioxidant effect,70

by modifying directly the inflammatory molecules involved in this pro-

cess.71 Insulin infusion had an inhibitory effect on Reactive Oxygen Spe-

cies production and NF-kB expression in obese, insulin-resistant
Curr Probl Cardiol, January 2020 9



subjects.72 Insulin possesses anti-inflammatory effects, as documented in

intensive care unit patients,73 in patients who undergo to coronary artery

bypass grafting,74,75 in acute myocardial infarction76,77 and burned

patients.78 In patients with type-2 diabetes after myocardial infarction,

long-term insulin administration improved survival and reduced the inci-

dence of reinfarction,77 confirming that excessive serum glucose levels are

a strong predictor of mortality. Liepinsh et al79 demonstrated that a chronic

postprandial metabolic state, characterized by insulin elevation and conse-

quent increased glucose and lactate utilization, has a protective effect

against myocardial infarction.

However, insulin resistance has a detrimental effect on metabolic regu-

lation, is a determining factor in the development of metabolic syndrome,80

and is correlated with left ventricular diastolic dysfunction and structural

alterations.81 Insulin resistance promotes the development of HF,82 inde-

pendently from ischemic cardiac disease.83,84 In cardiac hypertrophy

induced by pressure-overload as aortic stenosis, insulin resistance, and

reduced mitochondrial oxidative capacity are the early metabolic alteration

favoring the progression toward HF.85 Experimental clinical models in

humans and animals have revealed an interdependence between insulin

resistance and HF.86 Insulin resistance in HF is associated with increased

serum concentrations of proinflammatory cytokines, catecholamines, cata-

bolic steroids,87 and even with reduced testosterone and adiponectin levels

in males.88 The mechanism of action of insulin is complex and well sum-

marized by Riehle et al.59 Improvement in the biologic activity of insulin,

after moderate weight loss and an appropriate diet in overweight and obese

patients with ischemic cardiac disease, could be part of an overall therapeu-

tic strategy to improve cardiovascular function and reduce HF events.
Effect of Weight Loss on Heart Function
Weight loss following a restricted calorie diet in obese patients is asso-

ciated with metabolic and neurohumoral adaptations that may contribute

to lifespan extension.89 Calorie restriction improves mitochondrial func-

tion, DNA repair, and autophagy,90 and stimulates stem cell regeneration.

In obese subjects, many clinical studies have shown that weight reduc-

tion significantly improves cardiac function (see Table). Weight loss

improved both left ventricular mass and cardiac function.91-95 In obese

patients with HF, intentional weight loss increased the cardiac efficiency

and the quality of life.96 Hypocaloric diets, with carbohydrate or fat

restriction, associated with modest weight loss, reduce the triglycerides

depot in the cardiomyocytes by approximately 25%.97 However, Zamora
10 Curr Probl Cardiol, January 2020



TABLE. Effect of weight loss on cardiac functions

Authors Patients Age BMI Intervention Duration Effects

Utz, 2013 (106) 38 45 29 Hypocaloric diet 6 months Weight loss reduced myocardial
triglyceride content

Guglin, 2013 (103) 433 56.3 27.9 Spontaneous 3 months Both RV and LV systolic function
improves

Kardassis 2012 (101) 44 41.5 42.5 Bariatric surgery 10 years Left ventricular volume, stroke
volume and cardiac output
primarily associated with lean
body mass,

Haufe, 2012 (104) 170 44 32.9 Hypocaloric diet (low
CHO and low fat)

6 months Low CHO and Low fat diet
improved left ventricular mass

de la Fuentes, 2009 (102) 60 47 37 Diet women: 1200-
1500 kcal/d;
men:1500-1800

2 years Moderate weight loss in obese
subjects is associated with
beneficial changes in
cardiovascular structure and
function.

Corrao, 2000 (105) 32 45 32 Hypocaloric diet 4 months Improvements in LV structure and
function.

LV, left ventricular; RV, right ventricular.
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et al98 found that the spontaneous weight loss of about 5% in patients with

HF is associated with long-term mortality. These discrepancies could be

explained by the different effect of nutritional intake between a balanced

calorie-restricted diet and spontaneous weight loss in HF patients. In

obese patients with atrial fibrillation, a long-term sustained weight has

been shown to substantially reduce arrhythmia burden and maintain sinus

rhythm compared to controls.99 De Lucia et al100 have recently demon-

strated that a long-term calorie restricted diet in HF patients improved the

cardiac sympathetic innervation and inotropic reserve. In obese (??)

chronic HF patients, a weight-reducing nutritional intervention was asso-

ciated with improvement in NYHA classification and decreased HF-

related rehospitalization.101 In patients with coronary artery disease, with-

out HF, Ellsworth et al102 found that a weight loss of 7%-10% determined

a down-regulation of the genes which modulated the vascular endothe-

lium and decreased the cardiovascular risk. After 1 year, insulin level, C-

reactive protein, and leptin levels were significantly reduced, and these

changes were not observed in the control group.

In patients with metabolic syndrome, the restriction of calories and car-

bohydrate intake have been found to improve insulin sensitivity, post-

prandial hyperglycemia, and reduce cardiovascular risk, independently of

the weight loss.103 In other studies, body fat reduction following bariatric

surgery improved ventricular and overall cardiac function in type-2 dia-

betes patients, also resulting in improved glycemic control.104,105
Effect of Calorie Restricted Diet on Heart Function
A caloric restricted diet has a beneficial effect on metabolism reducing

the development of atherosclerosis,106 preventing hypertension and car-

diac hypertrophy,107 reducing the pathogenesis of cardiac hypertrophy

pressure overload-induced.108 Furthermore, caloric restriction improves

myocardial function by reducing the senescent process of myocardium

suppressing mTOR and increasing autophagy.109 De Lucia et100 demon-

strated that caloric restriction in male rats with HF improved cardiac

function and inotropic reserve favoring sympathetic cardiac innervation

and b-adrenergic receptor levels in the myocardium. However, the antiag-

ing effect of caloric restriction on the myocardium has an opposite effect

in old age compared to young age subjects.110

Caloric restriction acts mechanistically accelerating cardiac autophagy

and reducing ATP content but modulated by AMPK,111 and short-term

calorie restriction improved AMPK myocardial expression in both young

and old hearts.112 AMPK plays an important role in protecting cardiac
12 Curr Probl Cardiol, January 2020



function and homeostasis and myocardial adaptation to starvation.111 The

AMPK signaling becomes less responsive with advancing age, and after

prolonged caloric restriction leads to cellular stress and dysfunction in

cardiac contractility.113

Of high relevance is the autophagic process induced by prolonged star-

vation in cardiac myocytes. In cultured cardiomyocyte cells, glucose dep-

rivation activates the autophagic flux increasing Sirt1, required for

the deacetylation of FOXO1 which is essential for maintaining left

ventricular function during severe caloric restriction.114 Metabolic

remodeling at the myocardial level precedes structural alterations

activating the target of rapamycin complex 1 (mTORC1), a major

regulator of cell growth, resulting in increased protein synthesis and

hypertrophy.115 Autophagy is an essential biologic mechanism to

maintain cellular and tissue renovation and health.116 The regulation

of autophagy is not only a response to the starvation but in some tis-

sue occurs actively without starvation.117 Metabolic alteration includ-

ing glucose and amino acids oxidation may be responsible for

mitochondrial dysfunction and antecedent to HF.118 Excessive activa-

tion of autophagic flux can favor the transition to HF.119

Very-low-calorie diets can also be dangerous for cardiovascular

metabolism and function.120 Van der Meer et al121 showed that in 14

healthy men a very-low-calorie diets (471 kcal/day, 50.2 g carbohydrates,

protein, and 6.9 g fat) for a period of 3 days resulted in an increase in

myocardial deposition of triglycerides and decreases in left ventricular

diastolic function, without changes in ejection fraction. Similar results

were reported by Reinolds122 after a 2-day fast. The increased deposition

of triglycerides in cardiomyocytes is a consequence of the excessive

plasma NEFA levels, as observed in type-2 diabetes and obesity.120
Severely Restricted Diet and Mortality Risk
Even though weight loss has beneficial effects on cardiac function in

obese patients, severely restricted diets can cause a detrimental effect on

cardiac function and increase mortality risk in patients who have low

body mass index (BMI)123,124 as well as healthy adults.124 Significant

weight loss (ie, intentional or unintentional) can profoundly affect cardiac

metabolism, particularly in persons with known CAD.125 Low BMI can

be associated with immobility, poor nutrition,126 and frailty in the elderly,

but is often not considered in a typical clinical evaluation.127 Notably,

some HF patients have a reduced hunger sensation, nausea, and spontane-

ously restrict food intake.128 Despite its high incidence in geriatric
Curr Probl Cardiol, January 2020 13



patients, malnutrition is rarely recognized and treated129 and is often

missed as a clinical sign in patients with chronic HF.130 Spontaneous

weight loss should be treated aggressively because it represents a higher

risk of muscle wasting and cachexia.131 Among healthy obese subjects,

weight loss generally does not reduce mortality risk.132
Effect of Starvation on Cardiac Function
Prolonged calorie restriction has a deleterious effect on cardiac physi-

ology and function. Cordero-Reyes et al133 showed that energy starvation

in HF patients caused metabolic alteration through reduced mitochondrial

number but not a reduction in mitochondrial electron transport capacity.

Deficient carbohydrate diets (�800 kcal/daily) may negatively impact

vascular endothelial function while maintaining recommended carbohy-

drate intake generates a more favorable vascular profile.134 In mice, a

restricted caloric diet (by 40%) for 30 weeks showed a decreased ventric-

ular mass and cardiomyocyte contractility, elevated phosphorylation of

AMPK, and depressed phosphorylation of mTOR and ULK1.135 These

data suggest an indispensable role of AMPK in the maintenance of car-

diac metabolism under prolonged caloric restriction through autophagy

regulation.135

Starvation, as observed in patients affected by anorexia nervosa, is

associated with tissue alteration and many medical complications136

and induces a significant deleterious effect on cardiac function.137

The most concerning are those related to the cardiovascular system,

such as serious arrhythmias or structural cardiac alterations which

lead to increased mortality.138 During starvation protein and fat catab-

olism are increased, which lead to loss of cellular volume and atro-

phy of various tissues, including brain, liver, intestine, kidney, and

muscle, in addition to the heart muscle. Morphologic studies by ultra-

sound have shown decreased cardiac mass, reduced cardiac chamber

volumes, and mitral valve prolapse.139,140 Congestive HF has also

been described as a cause of death in anorexia nervosa.141 Siegel et

al142 described a grossly normal heart that weighed 250 g with focal

inflammation of the conduction system in association with massive

weight loss due to dieting. Isner et al143 described a reduced cardiac

weight of 120-140 g, with a grossly normal aspect. Histologically, it

has been reported that widespread interstitial fibrosis in the papillary

muscles and myxoid material deposition occurs, which can be respon-

sible for rhythm disturbances in patients with anorexia nervosa.144 In

some anorexic patients, the cause of death was associated with
14 Curr Probl Cardiol, January 2020



fibrosis and myxoid material deposition which are a direct conse-

quence of starvation.144 In patients following severe restrictive diets,

a mild QTc prolongation has been observed,145 but the QTc interval

was not correlated with the disease severity146 but was negatively

associated with serum potassium concentrations.147
Nutrition in Chronic HF Patients
In patients with chronic HF, food intake is extremely important to

improve the quality of life and survival rate. Overweight and mildly

obese patients with CVD, compared with underweight patients, have a

better prognosis as expressed by the obesity paradox concept.148 BMI has

been shown to be inversely correlated with all-cause mortality,149 and

overall cardiovascular mortality is reduced with higher BMI.150,151 An

increase in BMI of 5 units decreases the risk of mortality by 10%.152

Notably, the mortality rate is increased at the high end of the extreme of

the BMI distribution resulting in a U-shaped pattern, with increased mor-

tality at both the lowest and highest BMI.153,154

Moreover, after adjustment for confounding factors,155 the group with

the lowest BMI (<18) exhibited the highest mortality. The obesity para-

dox could be partially explained by a significantly lower sympathetic acti-

vation in obese CHF patients156 (impact of visceral obesity upon the

metabolic syndrome). Importantly, however, only BMI has been used as

the criterion for obesity in these studies, while fat-free mass and muscle

mass are arguably more important given that they are stronger predictors

of LV mass than fat mass.

Macronutrient ingestion influence blood substrates which has a signifi-

cant effect on the insulin-sensitive tissue.157 A reduction in calorie intake

exerts a profound effect on weight loss representing the principal factor

of reducing all metabolic syndrome components, independent from diet

composition.158 Daily caloric intake of about 125 kJ/kg (=29 kcal/kg) and

a daily protein intake of 1.2-1.4 g/kg body weight is recommended for

elderly patients at normal weights.159 In overweight and obese patients

less energy intake is required (20-24 kcal/kg/day). A reduction in dietary

fat intake to about 25% of total caloric intake (0.6-0.8 g/kg/day) is ade-

quate because high-fat diets associated with low-carbohydrate predispose to

insulin resistance.160 In overweight patients, restricted calorie diets cause an

improvement in insulin resistance independent of macronutrient composition.

Ketogenic diets improve insulin resistance,161 and low carbohydrate

and high protein diets enhance metabolic equilibrium and reduce

cardiovascular risk.162 The reduction in calorie intake is effective to
Curr Probl Cardiol, January 2020 15



reduce body fat independent of diet composition, but a diet with

high-CHO and low-fat composition is more effective in reducing the

markers of MetS.163 A relatively high-carbohydrate diet is suggested

during submaximal exercise because it increases the rate of whole-

body fat oxidation and reduces the rate of muscle glycogenolysis.164

Weight loss induced by a very low CHO and high-saturated-fat diet is

detrimental to cardiac function and has a detrimental effect on CVD risk

factors.165 Nilsson et al166 found that a low CHO-high fat diet in mice for

2 weeks caused an increase in body fat and a reduction in lean mass; after

4 weeks cardiac function also deteriorated. Low CHO-high fat diets

impair cardiomyocytes function was reduce the myocardial response to

ischemia. The increased fatty acid oxidation in the presence of reduced

CHO availability compromises the recovery of left ventricular function.167

Also, low CHO-high fat diets have been shown to be a limiting factor in

endurance athletes in whom the adaptation to training and performance

benefits are negated.168 Low CHO-high fat diets may have some clinical

applications, but this does not appear to be the case in patients with CVD

or those with dyslipidemia or insulin resistance.169 In the myocardium, oxi-

dation of fatty acids is inhibited proportionate to the increased availability

of fatty acids causing contractile dysfunction.170 This metabolic change, if

protracted for an extended time (weeks or months), can cause measurable

damage to the cardiac tissue causing a dramatic lipid deposition within

cardiomyocytes upon fasting.

Increasing FFA oxidation results in a reduction in glucose oxidation

but causes a decrease in cardiac function and efficiency.171 CHO metabo-

lism reduces FA oxidation and cardiac alteration under stress conditions

of cardiac overloads, such as exercise, hypertension, and hypertrophy.172

Improving glucose utilization by myocardial tissue is an effective strategy

to prevent the progression of cardiac dysfunction such as that associated

with pathologic hypertrophy.173 A high polyunsaturated and saturated

fatty acid intake was significantly associated with 1-year mortality in

patients with chronic HF.174 In patients without HF, higher plasma FFA

were associated with a 12% higher risk of HF.175
Nutritional Intake in CHF Patients
The major nutritional dysfunction in HF patients is represented by mal-

nutrition. Various clinical studies have found that patients with CHF are

in a prevalent malnutrition state varying from 54%176 to 60%-69%,177

and the prognostic value of malnutrition, assessed by the Controlling

Nutritional Status, demonstrated that represent the best predictor of
16 Curr Probl Cardiol, January 2020



death.178,179 After 1-year follows up, the mortality rate was 65% between

patients malnourished and frail while only 1% between those who were

neither frail nor malnourished.180 However, an excess of nutritional

intake leads to cardiac dysfunction and HF181 It appears evident that an

adequate nutritional intake in HF patients is recommended.
Micronutrients
Micronutrients have been proposed to have a benefit in improving clin-

ical management of HF patients.182 A sodium-restricted diet (2000-4000

mg/day) with a reduction in total fluid ingestion to 1.5 l/day has been sug-

gested to result in clinical improvements in HF functional class.183 Len-

nie et al184 showed that higher sodium intake (more than 3 g daily)

increased the risk of rehospitalization more than 2 times compared to

patients with lower sodium diets. Further analysis showed no advantages

related to further sodium reduction in patients with stable HF.185

Omega-6 and omega-3 are essential fatty acids that mediate cellular

inflammatory responses186 and decrease the risk of serious arrhythmias

and sudden death.187 The American Heart Association has recently

expanded the list of Class recommendation for Omega 3 prescription in

CVD patients for their medical benefits.188 Although many supplements

have been suggested for HF patients including coenzyme Q10, carnitine,

and vitamin D, the potential benefits to cardiac function remain to be

proven.189 The administration of multiple micronutrient supplementa-

tions in chronic stable HF patients taken for 12 months provided no evi-

dence of any benefit.185

Antioxidant vitamins (vitamin C, E, and b-carotene) did not show posi-

tive evidence for a protective effect on CVD and mortality.190 However,

the serum level of vitamin E was negatively associated with endothelin

function.191

Coenzyme Q10 is a component of cellular membranes and is involved

in the production of ATP in the mitochondria improving the electron

transport chain and reducing the redox reaction. In patients with chronic

HF, the administration of CoQ10 (100 mg x 3 times daily) was safe and

reduced some cardiovascular complications.192 However, the beneficial

effects remain uncertain, and larger randomized clinical trials on CoQ10

supplementation in patients with CVD are needed.193 Daily intake of res-

veratrol at the dose of 150 mg/daily of for 4 weeks did not improve meta-

bolic markers related to cardiovascular health.194 Sciatti et al195 in a

review evaluating the effect of micronutrients in patients with HF
Curr Probl Cardiol, January 2020 17



concluded that a beneficial role remains to be demonstrated and large

clinical trials with a single supplement method are required.

Future Perspectives
Clinical trials in patients with HF with specific calorie-restricted diet

prescription with high CHO and protein and low fats contents are neces-

sary to evaluate the myocardial efficiency. A low-calorie diet of

1200-kcal/daily in obese patients was safe for a long period up to 16

weeks,196 and no different effect in improving insulin resistance between

high vs the low glycemic index of CHO was found.197 Calorie restriction

with different modalities such as intermittent fasting (60% energy restric-

tion on 2 days per week) or periodic fasting (a 5-day diet providing 750-

1100 kcal) and time-restricted feeding improved insulin resistance and

the risk factors for CVD198 have been evaluated in healthy and over-

weight human subjects with positive effects. However, further investiga-

tion on the effect of a restricted calorie diet and with balanced

macronutrients in patients with CVD and HF is necessary. Furthermore,

in association with nutrition, the anabolic hormone level should be con-

sidered at the same time.

Conclusion
Nutrition has an essential impact upon the recovery of heart func-

tion in patients with CVD and HF for improving energy metabolism

and energy transfer, and for reducing HF mortality. Macronutrients

regulate cardiomyocyte activity which can be improved by the opti-

mization of glucose uptake, improved insulin activity, and by reduced

fat intake. Weight loss, through excess fat loss, is useful for obese

and type-2 diabetes patients, while some evidence points to weight

loss being detrimental to underweight patients for whom mortality

risk may be increased. Thus, from a clinical perspective, dietary

interventions should be personalized, based on consideration of

anthropometrics data representing states of excess adiposity, under-

weight, or low lean body mass.

Overweight and obese individuals should adopt a gradual restriction

of calories from unhealthy fats and refined carbohydrates while main-

taining lean body mass through ingestion of healthful fats, complex car-

bohydrates, and appropriate protein intake consistent with body mass

requirements.

Overweight and obese subjects need a calorie-restricted diet, targeted

to a 40% reduction in caloric ingestion and based on basal energy
18 Curr Probl Cardiol, January 2020



expenditure with high protein, low-fat composition improving insulin

activity and glucose utilization by cardiomyocytes. In lean or under-

weight subjects, the diet should be nutritionally balanced, and isocaloric

to maintain and preserve lean body mass calorie ingestion should counter-

act the risk of malnutrition to prevent cardiac cachexia and increased risk

of cardiac mortality.
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The importance of nutrition in the recovery of heart function in patients with
CVD and HF have several potential benefits.

Several perspectives can be drawn from Dr Bianchi’s review.

Macronutrients regulate cardiomyocyte activity. Heart function can be can be
improved by optimizing glucose uptake, insulin activity, and by reduced fat
intake.

Weight loss, through excess fat loss, is useful for obese and type-2 diabetes
patients. However, in patients that are underweight weight loss could be
detrimental.

Dietary interventions should be personalized, based on consideration of
anthropometrics representing states of excess adiposity, underweight, and low
lean body mass.

Overweight and obese individuals should adopt a gradual restriction of calories
from unhealthy fats and refined carbohydrates while maintain lean body mass
through ingestion of healthful fats, complex carbohydrates, and appropriate
protein intake.

Diets in underweight and lean patients, should be nutritionally balanced and
isocaloric to maintain and preserve lean body mass in order to prevent cardiac
cachexia.

I want to thank Dr Bianchi for an interesting review of nutrition, a very important
subject in the management of cardiovascular diseases.
31


	Impact of Nutrition on Cardiovascular Function
	Energy Metabolism and Heart Function
	Metabolism in the Heart
	FFA
	Glucose Metabolism

	Protein and Amino Acids
	Insulin Effects on the Ischemic Heart
	Effect of Weight Loss on Heart Function
	Effect of Calorie Restricted Diet on Heart Function
	Severely Restricted Diet and Mortality Risk

	Effect of Starvation on Cardiac Function
	Nutrition in Chronic HF Patients
	Nutritional Intake in CHF Patients
	Micronutrients
	Future Perspectives
	Conclusion
	References


